Tre coppie decidono di prendere per cena pizza da asporto. Arrivati alla pizzeria, ordinano rispettivamente due margherite senza olio, una caprese e una bresaola, una caprese e una vulcano. Quando le pizze sono pronte, la commessa le fornisce impilate in ordine ignoto. Ciascuno dei tre cavalieri prende due delle pizze per distribuire equamente il carico durante il trasporto verso casa.

Supponendo che l'ordine in cui le pizze sono state distribuite sia perfettamente casuale, qual è la probabilità che ciascun cavaliere trasporti le due pizze ordinate dalla rispettiva coppia?

Soluzione

Nel seguito, indicheremo con B la pizza Bresaola, con C la Caprese, con M la Margherita (senza olio) e con V la Vulcano. Il pizzaiolo fornisce le pizze in un ordine casuale (ad esempio MCCBMV), che per comodità i tre cavalieri prenderanno in ordine (nell'esempio, il primo prenderà MC, il secondo CB, il terzo MV).

La probabilità che i cavalieri portino il paio giusto di pizze è quindi il numero delle permutazioni che assegnano a ciascun cavaliere le pizze giuste diviso il numero totale di permutazioni (distinte) possibili.

Le permutazioni valide sono quattro, per le seguenti condizioni: il primo cavaliere deve prendere le margherite (una sola possibilità: MM), il secondo cavaliere deve prende la bresaola e una caprese (due possibilità: BC, CB), il terzo cavaliere prende la vulcano e una caprese (ancora due possibilità: VC, CV). Le permutazioni in questione possono anche essere enumerate per esteso:

  • MM BC VC
  • MM CB VC
  • MM BC CV
  • MM CB CV

Quante sono invece le permutazioni distinte possibili1? Se le pizze fossero tutte diverse, si avrebbero 6! = 720 permutazioni, ma poiché vi sono due margherite, e tutte le permutazioni in cui le due margherite si scambiano di posto sono equivalenti, il numero di permutazioni va dimezzato; analogamente per le capresi, ottenendo infine 720/4 = 180 permutazioni distinte.

La probabilità che ciascun cavaliere porti le pizze della propria coppia è quindi di 4/180, ovvero 2/90 o 1/45, il 2.(2)%.

{ Costruire un albero delle 180 combinazioni distinte. }


  1. si ringrazia il proponente del gioco per aver anche determinato il modo più rapido per calcolare le permutazioni distinte. ↩