Se è vero che la matematica è concettualmente un linguaggio ‘universale’, lo stesso non può dirsi dei sistemi di numerazione. Ad esempio, siamo ormai abituati a considerare ‘universale’ il sistema posizionale basato sulle cosiddette cifre arabe, ma abbiamo dimestichezza anche con il ben diverso sistema simbolico in uso nell'antica Roma. E questi sono solo due dei sistemi che sul nostro pianeta sono (o sono stati) usati.

Supponiamo di entrare in contatto con una civiltà aliena, magari ormai estinta, ma che ci abbia lasciato documenti ed iscrizioni su cui poterla studiare. Anche ammesso che, per la sua universalità, la loro matematica sia ‘isomorfa’ alla nostra, possiamo essere sicuri di riuscire a non dico leggere, ma almeno identificare la loro rappresentazione della stessa?


Propongo un esercizio di riscaldamento. Supponiamo di sapere che gli alieni scrivano, come noi, da sinistra verso destra e poi dall'alto verso il basso. Supponiamo anche di aver identificato gli otto simboli con cui vengono scritti i numeri, e che trascriveremo con le prime otto lettere dell'alfabeto latino: A B C D E F G H.

Supponiamo inoltre che nei documenti che ci sono pervenuti compaia un solo simbolo di operazione, che trascriveremo con ˆ. Supponiamo che nei frammenti arrivati fino a noi, gli esempi più semplici che si riescano a trovare siano questi:

  • AA ˆ AA = BB
  • AA ˆ BB = CC
  • HA ˆ HA = HAB

Ovviamente, si trovano esempi più complicati, come CCFDAC ˆ FEEGHC = AADDBAF.

Siamo in grado di cominciare a interpretare i numeri (e capire di quale operazione si tratta) semplicemente da questo?

Spoiler Alert!

Il sistema numerico presentato è biiettivo in base 8, con alcune modifiche. Come nei sistemi di numerazione biiettiva, le otto cifre rappresentano i numeri da 1 a 8, e non si fa quindi uso dello zero. In aggiunta, gli alieni scrivono i numeri nella direzione di scrittura, partendo dalle cifre meno significative, e chiudendo con la cifra data dal numero modulo 7.

Vediamo alcune ragioni perché un siffatto sistema ha senso.

L'uso della base 8 invece che della base 10 è facilmente giustificabile, ad esempio, supponendo che gli alieni abbiano solo 8 dita invece delle nostre 10.

Scrivere le cifre meno significative prima di quelle più significative semplifica la scrittura in riga dei risultati delle operazioni (non è necessario sapere in anticipo quanto saranno lunghi e lasciare spazio a sufficienza).

L'uso della cifra supplementare facilita la determinazione di eventuali errori. Nel nostro usuale sistema numerale, questo punto si applicherebbe aggiungendo alla normale sequenza di cifre il valore modulo 9 dello stesso numero.

Il valore della cifra di controllo non è nemmeno difficile da calcolare, ricordando la buona vecchia ‘prova del nove’ che un tempo si insegnava alle elementari: basta sommare le cifre del numero, ripetutamente, fino ad ottenere una sola cifra. Volendo separare con una barra verticale il numero dalla cifra di controllo, scriveremmo 12|3 o 15|6, o 125678|2 (adottando, a parte la base, il sistema alieno, avremmo invece 213, 516, 8765212 rispettivamente).

L'unico inconveniente (come ai tempi della prova del 9) è che bisogna ricordarsi che 0 e 9, come cifre di controllo, sono equivalenti. È qui che interviene infine l'utilità del sistema biiettivo, che rende univoca la rappresentazione, mancando di una cifra per indicare lo 0.